Package: EBcoBART 1.0.1

EBcoBART: Co-Data Learning for Bayesian Additive Regression Trees

Estimate prior variable weights for Bayesian Additive Regression Trees (BART). These weights correspond to the probabilities of the variables being selected in the splitting rules of the sum-of-trees. Weights are estimated using empirical Bayes and external information on the explanatory variables (co-data). BART models are fitted using the 'dbarts' 'R' package. See Goedhart and others (2023) <doi:10.48550/arXiv.2311.09997> for details.

Authors:Jeroen M. Goedhart [aut, cre, cph], Thomas Klausch [aut], Mark A. van de Wiel [aut], Vincent Dorie [ctb], Hanarth Fonds [fnd]

EBcoBART_1.0.1.tar.gz
EBcoBART_1.0.1.zip(r-4.5)EBcoBART_1.0.1.zip(r-4.4)EBcoBART_1.0.1.zip(r-4.3)
EBcoBART_1.0.1.tgz(r-4.4-any)EBcoBART_1.0.1.tgz(r-4.3-any)
EBcoBART_1.0.1.tar.gz(r-4.5-noble)EBcoBART_1.0.1.tar.gz(r-4.4-noble)
EBcoBART_1.0.1.tgz(r-4.4-emscripten)EBcoBART_1.0.1.tgz(r-4.3-emscripten)
EBcoBART.pdf |EBcoBART.html
EBcoBART/json (API)
NEWS

# Install 'EBcoBART' in R:
install.packages('EBcoBART', repos = c('https://jeroengoedhart.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jeroengoedhart/ebcobart/issues

Datasets:
  • dat - Exemplary Data Set

On CRAN:

3.30 score 1 scripts 504 downloads 2 exports 45 dependencies

Last updated 3 months agofrom:cbceb03bbb. Checks:OK: 5 ERROR: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macERRORNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macERRORNov 04 2024

Exports:Dat_EBcoBARTEBcoBART

Dependencies:abindactuarassertthatbackportscheckmateclicvardbartsdistributionalexpintextraDistrfansifastICAfBasicsfGarchgbutilsgenericsgluegsslatticelifecyclelogitnormloomagrittrMASSMatrixmatrixStatsnakagaminumDerivpillarpkgconfigposteriorrbibutilsRcppRdpackrlangspatialstabledisttensorAtibbletimeDatetimeSeriesunivariateMLutf8vctrs